Improving on-farm water management by introducing wetting front detectors to small scale irrigators in Ethiopia

Petra Schmitter, Amare Haileslassie, Yigzaw Desalegn, Amenti Chali, Banteamlak Mengstie, Seifu Tilahun, Simon Langan, Jennie Barron
IRRIGATION IN ETHIOPIA

- Smallholder irrigation is developing fast in Ethiopia

- On-farm water management:

 Simple technical advisory units on water application to high value crops will lead to a reduction in water demand

- Consequences:

 - Over-irrigation in schemes has led to periodic water scarcity issues in large schemes

 - Low yield and water productivity

 - Fertilizer leaching and increased groundwater tables
WETTING FRONT DETECTORS

- A mechanical device to monitor the wetting front
- 2004©CSIRO (http://www.agriplas.co.za/)
- Installation depth depends on the application, soil & crop type
IRRIGATION OF ONION

20 cm

40 cm
Field capacity at the top layer is reached within the entire root zone: **over irrigation**
STUDY SITES, CROPS & MANAGEMENT

- Water lifting and irrigation:
 - Manual lifting & overhead
 - Motorized lifting & furrow
 - Gravitational & furrow

- Crops:
 - Onion, tomato, cabbage, green pepper
 - Wheat
 - Potato

- Measurements:
 - Irrigation quantity
 - Crop performance and yield
 - Soil moisture and management
Soil moisture change throughout the first 60 cm before (0 min), during (5-15 min) and after irrigation (30-60 min)

\[\theta_{FC} 10\, cm = 32.7\% \]
\[\theta_{WP} 10\, cm = 21.2\% \]

The shallow WFD was installed at 20 cm, the deep at 40 cm

\[\Rightarrow \theta_{20\, cm, 15\, min} = 33.3\% \]
\[\theta_{40\, cm, 15\, min} = 20\% \]
MANUAL WATER LIFTING

- Farmers practice (FP) uses 30% less water compared to WFD
- Water application was higher at critical growth stages
- Yield increased with a factor 2.1
- Impact increased in year 2 as experience increased

⇒ WFD guided farmers who are new in irrigation to double their yield when increasing their irrigation by 30%. The method slightly used less water compared to the TDR.

(T. Asnakaw, in prep)
Farmers preferred the CWR and WFD yield as fruits were bigger and fields had a higher marketable yield.
MOTORIZED VS. MANUAL LIFTING

Installation at the same depth:

⇒ Effect depends on:
- Water availability
- Method of application
- Method of lifting
- Soil type
- Land size/ experience?
Onion

Simple technical advisory on water application will lead to a reduction in water demand and efficient use of inputs

OPTIMIZING RESOURCES BEYOND WATER

- Similar effect of WFD as for motorized lifting
- Water management improves yield by 7%
- Reduction of fertilizer: 20% N and 50% P
- 1,153 USD/ha profit (90% water, 10% fert.)

(B. Endrie, in prep)
INCREASING IRRIGATION COMMAND AREA

- Experiment was repeated using full farmer fields with WUA (1 WFD for 0.5 ha)
- Three blocks: Chihona, Tagel, Adibera
- Is water saving achieved?
- Does it impact yield?
- Can land be increased?
INCREASED WATER PRODUCTIVITY IN THREE BLOCKS

- High variability between farmers remains
- 25% reduction in water consumption
- 22% increase in water productivity
When WUA distribute the information and manage water accordingly

=> increased irrigable land by 37% (onion) & 85% (potato)

(B. Mengstie, in prep)
CONCLUSION AND FURTHER OUTLOOK

• The **impact on water and crop** productivity depends strongly on **water lifting technology and management** (data on 300 fields being compiled)

• **Impact goes beyond** the hypothesis- reduction in costs through reduced fertilizer; positive impact on quality of produce (bigger and better); compliments existing indigenous knowledge

• Efficiency gains in both water and fertilizer **contribute** to move towards **sustainability** (reducing water demand, reduction in loss of nutrients etc.) and meeting the **SDG on water** (e.g 6.4)

• Influences farmers’ thinking about water use to **compliment their existing indigenous** skills (build trust in research for development) => well liked by farmers

• **Interest by National key stakeholders** to conduct National Research on irrigation scheduling using WFD
Acknowledgements:
- USAID – Feed the Future: Innovation Laboratory for Small Scale Irrigation and Africa RISING
- Global Affairs Canada: Livestock and Irrigation Value Chain for Ethiopian Smallholders
- Dr. Richard Stirzaker @ CSIRO